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Flow reactors are widely used in the chemical industry for purposes
of catalytic reactions [1,2]. Calculation of reactors of this type, even
in one-dimensional approximation, is complicated and possible only
with the use of numerical methods [1, 3]. Such calculations make it
possible to find the steady-state distribution of temperature and con-
centration in the chemical reactor if one exists; in general, however,
there may be other steady-state regimes which may be preferable from
the standpoint of obtaining a different degree of conversion of the
starting product, operating stability, etc.

In this connection special interest attaches to the question of the
existence and number of steady-state solutions of the system of equa-
tions describing the reactor process.

This problem was previously considered in [4-7]. Thus, in [4, 5]
it was pointed out that in certain special cases more than one steady-
state regime may exist. In [6, 7] the question of sufficient conditions
of uniqueness was investigated. In [7] it was shown that the steady-
state regime is unique in the case of short reactors or a dilute mixture
of reactants. In [8] the problem of the existence and uniqueness of the
steady-state regime was examined for a chain reaction model with
direct application of the general theorems of functional analysis.

The present paper includes an analysis of a very simple mathe-
matical model of an adiabatic chemical reactor in which an exother-
mic or endothermic reaction takes place. It is established that in the
case of an endothermic process a unique steady-state regime always
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exists, In the exothermic case the problem of the steady-state regime
also always has a solution which, however, may be nonunique; the
possibility of the existence of several steady-state regimes, associated
with the form of the temperature dependence of the heat release rate,
is substantiated,

§1. Formulation of the problem. Given a number
of simplifying assumptions the steady-state processes
of heat and mass transfer in a flow reactor can be de-
scribed by a system of equations of diffusion and heat
conduction in the form [1]:

d? d
e —m% 4 or(5, T)=0, (1.1)
a7 dT h

T Mg & T =0. (1.2)

1t is assumed that the reactor is a cylindrical ves-
sel with impermeable and non-heat-conducting lateral
surfaces. All the parameters are averaged over the
reactor cross section (one-dimensional problem). The
reactor is filled with a porous catalytic medium in
which the reaction takes place; £ is the yield or ex-
tent of the reaction in moles per unit volume, T is

temperature. The diffusion and heat conduction pro-
cesses in the reactor are characterized by the effec—
tive longitudinal diffusion coefficient D and thermal
conductivity, the diffusion coefficients being the same
for all the substances participating in the reaction;

m = pu, where p is the local density of the mixture of
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reactants and reaction products, and u is the filtration
rate. The specific heat ¢ takes into account the pre-
sence of the catalyst. The function r(£, T) describes
the relation between the local reaction rate in moles
per unit volume per unit time, temperature and yield;
h is the heat of reaction (when h > 0 the reaction is
exothermic; whenh < 0, endothermic).

Let the reactor (zone occupied by catalyst) occupy
aregion 0 =x =]. We will consider the case when
the regions "before" and "after" the reactor—catalyst
bed—are "empty" volumes free of catalyst extending
indefinitely into the regions —» < x < 0and 7 < x <
and having cross sections equal to the cross section
of the catalyst zone. In this case the boundary condi-
tions for Egs. (1.1) and (1.2) are easily obtained by
considering Egs. (1.1) and (1.2) in the empty volumes
(where the reaction rate is zero, and the transport
coefficients and specific heat have corresponding

b J/

0 B 0
Fig. 3

values, generally speaking, different from D, ®, and
¢) and substituting the conditions of continuity of con-
centrations, temperature, and diffusion and heat fluxes
at the reactor inlet and outlet [9, 10]. We obtain

—pDE 4 mE=0, z=0;  %_0 =1, (13

» dr
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-—id—T——l—mT =mT,,

a7
¢ dx z=0;

M E=O x:l,

?

(1.4)

Here, T, is the temperature of the starting mixture.
We assume that

x/c = pD, or y =ulpc=D. (1.5)
Using (1.5), from (1.1) and (1.2) we obtain the
equation

mj_z)(T—ig)=0,

(o1 405 — o

integration of which with allowance for boundary con-
ditions (1.3) and (1.4) gives
3

T(x)— 8@ =Ts. (1.6)

Equation (1.6) establishes a one-to-one corres-
pondence between the reaction yield and temperature

at any section of the reactor (similarity of the yield
and temperature fields). In this case

r (& I)=r(pc(Ty — D)k, T) = @ (T).

Consequently, when (1.5) is satisfied, to solve the
problem it is sufficient to consider only (1.2) with
boundary conditions (1.4) for the temperature.

In the general case the function &(T) is nonlinear;
therefore, generally speaking, the problem (1.2), (1.4)
does not have an analytic solution. The temperature
and concentration distributions can be found only by
using approximate methods or numerical integration.
We will consider the problem of the existence and num-
ber of solutions. First, we will investigate the general
form of the function &(T).

The classical expression for the rate of an irre-
versible chemical reaction when the starting mixture
is stoichiometric has the form

r=koexp(— 77) (tn— &’ (1.7)
Here, k, is the preexponential or frequency factor, E
is the activation energy, R is the universal gas con-
stant and g is the total order of the reaction. The
quantity &y, is the maximum yield of the reaction cor-
responding to total conversion of the starting substan-
ces into reaction products.

With similarity between the reaction yield and the
temperature fields, in accordance with (1.6) the maxi-
mum yield §,, corresponds to the temperature

h
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In the event of an exothermic reaction, Ty, is the
maximum possible temperature, and in the event of
an endothermic reaction the minimum possible tem-
perature (in the latter case it is assumed that the ini-
tial temperature T, is sufficiently high). However,
the value of Ty, like £y, cannot be reached in a re-
actor of finite length (see below); therefore

Ty T <T, (exothermic reaction): (1.8)

T..<T <7, (endothermic reaction). (1.9)

Starting from (1.6)—(1.9) we can draw the follow-
ing qualitative conclusions relating to the behavior of
the function ®(T):

1) the function &(T) > 0 at all permissible values
of T satisfying inequalities (1.8) or (1.9);

2) the function ®(Ty,) =0;

3) in the case of an exothermic reaction &(T) at
first increases monotonically with increase in T,
reaches a maximum, and thendecreases monotonically;

4) in the case of an endothermic reaction &(T) in-
creases monotonically.

We note that the dependence of reaction rate on
yield and temperature may have a form different from
(1.7). However, the properties of the function &(T):
enumerated above clearly remain unchanged for a
broad class of chemical reactions.

For convenience, we will unify the formulation of
the problem for exothermic and endothermic reactions.
We take the freestream temperature T, as a reference
value and introduce the variable

[T — T, (exothermic reaction)
B=[T—To|= {TO—T (endothermic reaction) (1.10)
and the function
F(O) = %@(Toie). (1.11)

Here, a plus sign is taken in the case of an exo-
thermic, and a minus sign in the case of an endother-
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mic reaction. Using (1.10) and (1.11), we write the
problem (1.2), (1.4) in the following form:

P0/dz* —UR 4 F(O) =0, 0<0<bn, (L12)
d0/dz—UB =0, ==0;, dB/dz=0, =z=1I
U =m@)™, Op=|Tp—"Tol), (1.13)

It follows from (1.11) and (1.8), (1.9) that the basic
properties of the function F(8) are the same as those
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of the function ®(T), except that in the case of an en-
dothermic reaction the monotonic increase of ®(T)
corresponds to a monotonic decrease of ¥(4). The gen-
eral behavior of the function F(6) is illustrated in Fig.
1 for exothermic (a) and endothermic {(b) reactions.

§2. Existence of steady-state regime. We will first show that the
function 6(x), the solution of the problem (1.12), (1.13), increases
monotonically provided that F(6) > 0. With this in mind we multiply
Eq. (1.12) by exp(=Ux) and integrate with respect to x from x to 1.
Using the second of conditions (1.13), we have

= U\ e U%p (0) dz . (2.1)

Q.
&3

R0

It follows from (2.1) that d6/dx > 0at 0 =<x < 1.

In view of the monotonic behavior of the function &(x) there is a
one-to-one correspondence between € and x (0 =6 =6,,,0 =x = 1),
We introduce the function p(8) = d6/dx and formulate the problem
(1.12), (1.13) for the function p(@). We have

d
Py —UP+F®=0, (2.2)
p=10, 8=0; ©()=6), (2.3)
p=U8;, 6=06 (B0)=8). (2.4)

In problem (2.2)~(2.4) the quantities 6, and 9; are not given and
must be determined in the process of solution.

We provisionally fix 8f. Then problem (2.2), (2.3) is the Cauchy
problem. Its solution always exists and is unique. Taking Of as para-
meter, we write this solution in the form p = p(e,ef).

We express the temperature at the reactor inlet in terms of the
outlet temperature. The corresponding relation between 6; and ef
follows from boundary conditions (2.4) and has the form

p (8, 0;)—UB; =0,

The value of 8¢ is found from the condition

[= S B (2.5)

p® 6p °
80p

Condition (2.5) selects the desired solutions of problem (1.12),
(1.13) among the set of solutions of problem (2.2)~(2+4).

The temperature distribution in the reactor is determined from the
implicit expression

&
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Thus, the question of the existence and number of solutions of the
problem (1.12), (1.13) reduces to the investigation of the existence
and number of solutions of the problem (2.2)-(2.5).

We note that the above arguments leading to the formulation of
the problem in the form (2.2)-(2.5) retain their force if we paramet-
rize the solutions of Eq. (2.2) taking as parameter €4, i.e., the reac-
tor inlet temperature. In this case the solutions of (2.2) with boundary
condition (2.4) have the form p = p(6;,9), the relation between 61
and 8¢ follows from boundary condition (2.3), and so on. From the
formal standpoint this approach is compietely equivalent to that de-
scribed above; however, parametrization of the solutions using Qf as
parameter is preferable for purposes of analysis. We will consider the
problem of the existence of solutions of problem (2.2)~(2.5). For this
purpose we investigate the behavior of the integral curves of Eq. (2.2).
The field of these integral curves is shown in Fig. 2. The isocline of
zero slope is the curve po(e) = U’lF(e) represented by a heavy line in
Fig. 2.

Above this line the integral curves have positive slope, below it,
negative slope. The curves intersect the straight line p = 0 at right

angles. The point € = 6m, p =0 is a singular point (if, for example,
F'(6p) = 0, this is a saddle point). Figure 2 also shows (dashed line)
the straight line p = U8, which by virtue of boundary conditon (2.4)
must be the termination of the integral curves—solutions of the prob-
lem (2.2), (2.3)—leaving points 6= 6f, p = 0 and entering the upper
half-plane. From an analysis of the field of directions of the integral
curves it follows that from any point in the interval (0,6pm) an integral
curve enters the upper half-plane to intersect the straight line p = U6
at some point with abscissa € = 6;. Thus, to each value of 6¢ there
corresponds a value of 9i.

At fixed ef, by virtue of the uniqueness of the solution of problem
(2.2), (2.3), there is only one integral curve passing through the point
o= ef,p = 0; consequently, to each value of Gf there corresponds a
unique value of 6j. Clearly, not every integral curve of this type de-
fines a desired solution of the problem (1.12), (1.13), since if 6)( is
arbiwrarily assigned the solution p(8,6f) may not satisfy integral con-
dition (2.5),

We will now consider condition (2.5), which associates a value of I
with each value of 6f and hence determines the function Z(ef). Itis
easy to see that the function l(GJc) is continuous on the interval (6, 6m).
This follows from the continuity of the function 81 = 91(9]6) on that
interval and the continuity of the function p'l(e,ef) atallo= Gf.

In fact, at © =0, the function p'l(e,ef) has a singularity; however,
it can be shown that this singularity is integrable if6¢ # 6. Actu-
ally, it follows from (2.2), (2.3) that the point6= Bf is an algebraic
moving critical point of the integral of Eq. (2.2) satisfying condition
(2.3), the solution of problem (2.2), (2.3) in a neighborhood of that
point having the form

P® 0 =V2F () (6; — )" —
— 2l (85— 0) + 0 ((8; —8)"), 2.7)

We will now examine the behavior of the function l(Bf) as Gf -
~> 0 and 7 — 6m. From an analysis of the integral curve field it fol-
lows that as 84— 0 necessarily ;> 0. Therefore, using (2.7), from
(2.5) we conclude that

[=2RTF 017 (8, — 0) +0(8; —65),

i.e., 1= 0 as 67 — 0, Similarly we conclude that I > « as oy~
->6m. We note that the latter implies the impossibility of reaching
the extremal temperature (maximum in the case of an exothermic
reaction and minimum in the case of an endothermic reaction) and
hence total conversion of one of the reactants in a reactor of finite
length.

It has just been shown that the function l(ef) defined by condition
(2.5) is continuous on the interval (6,6y) and takes the values 0 and =
at the ends of that interval. Hence it follows that with any given value
of 1, where 0 < I < =, condition (2.5) associates at least one value
of ef in the interval (0,6y,), i.e., to any reactor length there cor~
responds at least one value of the outlet temperature. In view of the
above reasoning, this implies the existence of a solution of the prob-
lem (2.2)~(2.5) and hence of the problem (1.12), (1,13). Thus, steady
reactor states always exist irrespective of the type of reaction (exother~
mic or endothermic).

$3. Endothermic reaction, Uniqueness of steady-state regime, As
already noted, to any value 0£(0 < 64 < Om) on the Op plane there
uniquely corresponds an integral curve p(6,6r) The point of intersec-
tion of this curve and initial straight line p = U8 has the coordinates
6 =86j, p = UBj. For each Gf Eq. (2.3) enables us to calculate a value
of I and hence determines the function 1) or the inverse function
0.(U).

Obviously, if as ¢ varies on the interval (0,«) the function Gf( 1)
is unique, then to any value of I there correspond unique values of
ef,ei and a single function p(e,ef) sgtisfying the problem (2.2)~(2.5).
In this case the problem of the operating regime of the chemical reac-
tor has a unique solution. However, if the function Gf(l) is such that
to any value 1 = ] there correspond several values of Gf, the problem
of the operating regime of a chemical reactor of length 7, has several



24 ZHURNAL PRIKLADNOI MEKHANIKI [ TEKHNICHESKOI FIZIKI

solutions and the number of solutions is equal to the number of values
of 67 corresponding to the given I,. The situation described is illus-
trated in Fig. 3, where the continuous curve corresponds to the case
of a unique solution and the broken line to the case of three solutions
atl= I,

Using Eq. (2.2), we write (2.5) in the form:

[J 8

%

oy

L= :) F(e) 9 — 5 FO) de 5.
50p 8,5y

Then, integrating by parts, and using conditions (2.3), (24), we
obtain

8= 5

ve;
F((-)) W®+7Fey T

[}
+ S p® gd~ (F ?e))de. (3.1)

We find the derivative of the function z(ef). Differentiating (3.1), we
obtain

]
dl U F a1y ap
w=Fey+ ) @wlrw)w e ©D
9,06,
If the right side of (3.2) takes positive values at all permissible values
of ejc, the function 7(6y) is monotonic and, consequently, the solution
of the problem is unique. Thus, the question of the uniqueness of the
solution of problem (2.2)=(2.5) can be solved by investigating the sign
of the right side of expression (3.2).

In the case of an endothermic reaction the function F(8) decreases
monotonically. Therefore the first factor in the integrand in (3.2) takes
only positive values on the entire interval of integration. We will esta~
blish the sign of the second factor. Differentiating Eq. (2.2) with res-
pect to 67, we find

i(_t?_p_):F(e) ap ©.3)

We integrate Eq. (3.3) with respect to ©, assuming that F(8) and
p =, ef) are known functions and having determined the constant
of integration from the value of the derivative 3p/ 6y, at some point,
for example, the point 6 = 6;, we obtain
9
op 011 ’
% (f’ef o=, exp {

} (3.4)

o

1

From (3.4) it follows that if the derivative dp/ aef at the point
6 = 6; is a positive quantity, this derivative retains its positive value
over the entire interval in question. As already noted, the constant of
integration can be determined from the value of the derivative 0p/69f
at any point on the interval [64,6]; therefore, positiveness on the en-
tire interval follows from the positiveness of ap/aef at any individual
point within that range.

An analysis of the field of integral curves shows that as 6f increases
the integral curves in the p, © plane corresponding to a larger 6f pass
above the integral curves corresponding to smaller values of Gf + This
means that at given 6 the quantity p(e,ef) increases with increase in
6, iue., dp/def > 0,

For the sake of clarity, Fig, 4 gives a qualitative picture of the
function p(83,0) representing the surface above the plane 9, 6;.

Thus, both factors in the integrand on the right side of (3.2) take
only positive values, so that in the case of an endothermic reaction
the inequality

drjde; >0 (3.5)

is satisfied at any permissible values of 6f.

Consequently, the function 1(6f) is monotonic, and the problem of
the steady-state operating regime of an endothermic reactor has a
unique solution.

§4, Exothermic reaction. In the case of an exothermic reaction the
function F(6) is nonmonotonic, at a certain value 8= 6* it reaches a
maximum (Fig. la).

In §2 it was shown that if the entire region of permissible tempera-
wres, i.e., the interval 0 < 0 < O, is considered, a steady-étate
regime always exists. We will show that: 1) on the interval 0 < 6 < 6%,
where the function F() increases, a steady-state regime may be lack-
ing, if the function F(6) grows sufficiently rapidly; 2) over the entire
region of permissibie values of the temperature 0 < 8 < 6y, the problem
may have more than one solution.

We will consider the representation of problem (1.12), (1.13) in the
form of an integral equation. To this end we return to Eq. (2.1) and in-
tegrate it with respect to x, using the first of conditions {1.13). We
obtain

Ux

ENF @ e U%dade,  (4.1)

B0

1
¢ ~

=7 )F ®e U% dg 1+
0

S B

In Eq. (4.1) the first term corresponds to the value of the reactor
inlet temperature.

Since the function 6(x) increases monotonically (see §2), we have
min6(x) = 6(0) = 6;. Then on the interval [0,0%], in view of the
growth of the function F(6), from (4.1) we have

1 —
8> 22T £ gy, @.2)

We will consider the functions F(9) satisfying the condition

aF (0)/60 > K k>0, (4.3)

From (4.3) and the positiveness of F(8) it follows that K6j = F(6;)
and from inequality (4.2) that problem (1.12), (1.13) does not have
solutions at

LI 15

1>

(44)

Condition (4.4) means that there is no solution at sufficiently small
U and sufficiently large I (see Fig. 5, where the region of absence of
solutions on the plane I, U is shaded). The physical significance of
this is obvious: for small velocities and a long reactor with a high-
energy exothermic reaction and no heat losses through the side walls
it is not possible for all the heat to be removed through the front (x =
= 0) and rear (x = [) ends of the reactor and the temperature rises
sharply (analogy with thermal explosion).

We will now consider the question of the number of steady-state
reactor regimes for the entire interval 0 < 6 < 6. We return to the
analysis of the function l(GJc) begun in § 3. In this case the function
F(8) decreases monotonically; therefore the second term on the right
side of (3.2) may take negative values. Since on the entire interval of
variation of ef the function l(Gf) varies from 0 (at 6f=0) 0= at
(o = 6y, there follows the possibility of a nonmonotonic variation
of the function z(ef). If the function l(9f) is nonmonotonic, certain
values of I, may correspond to several values of eJc and, consequently,
problem (2.2)—(2.5) will have several solutions at those values of Z, .

The number of solutions is determined by the number of points of
intersection of the straight line 1 = 1, and the curve Z(ef) (see Fig. 3)
and must be odd. The nonuniqueness of the solution, i.e., the pre-
sence of intervals on which the function Z(Gf) decreases, is associated
with the form of the function F(6).

In the plane 6, p we will consider two solutions of problem (2.2),
(2.3) corresponding to two different values of 6 equal to §{! and ey,
where 81 < 8. To each solution there corresponds a value of 65
which we will denote by 91(1) and 6j, respectively. Applying (2. 5) to
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each of the solutions, we obtain

(1)

&
PRI o R N S 7
§5 LplD, 8 p (61, 0)
i
Bi 9’
" 48 4 do
— v . 4,
Y rem e P0L0) (.5
REVRER ot
H f
The inequality
p(8; 8)>p (8", 9) (4.6)

holds for the funcrions (g, €) and p (8", 8) onthe interval §; < 6 < o .

Moreover,

p©;,0>0,  p(o, 8)>0, (1)

In view of (4.6) and (4.7), the first two terms on the right side of
(4.5) have values less than zero, so that their sum is equal to some
finite negative number, whereas the third term in (4.5) is equal to a
positive number.,

At values of 6f comesponding to the interval of variation of 7, of
which 1(6f) is a monotonically increasing function, the sum of the in-
tegrals in (4.5) is greater than zero.

At values of ef corresponding to the region in which 1(8¢) is a de-
creasing function, so that one and the same [ corresponds to not less
than three solutions of the problem (2.2)-(2.5), the sum of the inte-
grals in (4.5) must be negative.

The behavior of the functions p(©j, 6) and p (Ogl), 0) is determined
by the character of the function F(6). We will show that the nature of
variation of the function F(6) on the half-open interval 8; < 0 < 0y,
may be such that the corresponding value of 1(6f) is located on the
descending branch of the function I(8f). On the half-open interval in
question the function F(6) must be such that the last integral on the
right side of (4.5) is less than the sum of the moduli of the first two
integrals, whose value does not depend on the form of the function F(6)
at 0 > 8,1,

For example, let us take the function F(0) at® > 6, in the form

F° (8) = Yfzaq? -+ (2aoaz — 2/U%) (0; — 8) —
— sl (87 — B)2 - ¥aa5% (6; — B)%,
a9 =2/t "Vepy 477 (p1’ + 1sU),

g = — 1/2"7—“’/2101 — (pr’ —aU), pPB;, 0 |B ) = p1,

0p(6;, 0) /08| _qy=pi, T=0—0{. (4.8)
=vf

The quantity 684 in (4.8) plays the part of a parameter whose speci-
fic value will be determined later,

The solution of Eq. (2.2) with condition (2.3) on the interval
8" by, where the function F(@) is found from (4.8), has the torm

7°(8) = aq (8; — 8)"" — 25U (8; — 8) + a2 (8; — &),

It can be seenthat the solution p° (6) andits derivative are "joined"
with the solution p(€3,8) at the point 8 = 8, so that, taken together,
the functions p (8;, 0) (6; <0 << 6/), p°(8) (6% < 6 < 0p) will be a
solution of the problem (2.2)=(2.4) on the entire interval 6; < 8= ef
if

F(08)=F(®),

B, <<OM; F®)=rF10), 60O, (4.9)

In this case the last integral on the right side of (4.5) can be writ-
ten in the explicit form:
<Ya
dt
2 S ag — 2faUt + ast® * (4.10)
0

It follows from (4.8) that by reducing 6¢ (and consequently 7) we
can make the value of the integral (4.10) less than any predetermined

number, i.e., there is always a value 6; = 6% such that at 8, < 0%
the inequality

o 9}‘)
S dé < S [ 1 _
6;, 8 (1)
3 P (6 0) PASIC RN
Gf i
9,
1 J ]
_ _ | df 4 3 P (4.11)
p (9, 9) ] p(6, 0)
ol "
k)
will be satisfied.
From (4.11), in accordance with (4.5), there follows
1<, (4.12)

Thus, if the function F(6) has the form (4.9), there are always
values of 8 (we recall that the quantity €f enters into the function
F°(8) as a parameter) at which the solution Eq. (2.2) on the interval
oM, < 8 < By, joined by the continuous first derivative with the
solution of Eq. (2.2) on the interval 6; 0 < e)‘(”,satisfies inequality
(4.11), It can be asserted that to the corresponding value of I( Gf) there
correspond at least three solutions of the problem (2.2)~(2.5).

We note that the approximation of the function F*(0) is not too
artificial, True, at the point 8=8{" the function F* (@) is "joined"
with the function F(9) with a discontinuity of the first derivative. Ob-
viously, a smooth joint at that point cannot seriously affect the value
of the integral (4.10) and hence inequality (4.12).

The authors thank G. 1. Barenblatt, A. I, Leonov, L. M. Pis'men,
and Yu, I. Kharkats for discussing and commenting on the work.
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